Search results
Results from the WOW.Com Content Network
Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.
In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm.
where H(D) is the space of holomorphic functions in D. Then L 2,h (D) is a Hilbert space: it is a closed linear subspace of L 2 (D), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D
Download as PDF; Printable version; ... is even a Hilbert space. [7] ... is called the space of test functions on and it may also be denoted by ...
Let be an arbitrary set and a Hilbert space of real-valued functions on , equipped with pointwise addition and pointwise scalar multiplication.The evaluation functional over the Hilbert space of functions is a linear functional that evaluates each function at a point ,
The vector space of all continuous antilinear functions on H is called the anti-dual space or complex conjugate dual space of H and is denoted by ¯ ′ (in contrast, the continuous dual space of H is denoted by ′), which we make into a normed space by endowing it with the canonical norm (defined in the same way as the canonical norm on the ...
In mathematical analysis, the Hilbert–Schmidt theorem, also known as the eigenfunction expansion theorem, is a fundamental result concerning compact, self-adjoint operators on Hilbert spaces. In the theory of partial differential equations , it is very useful in solving elliptic boundary value problems .
The Hilbert transform can be understood in terms of a pair of functions f(x) and g(x) such that the function = + is the boundary value of a holomorphic function F(z) in the upper half-plane. [32] Under these circumstances, if f and g are sufficiently integrable, then one is the Hilbert transform of the other.