enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    where u is the flow velocity. The first term on the right-hand side of the equation is the ordinary Eulerian derivative (the derivative on a fixed reference frame, representing changes at a point with respect to time) whereas the second term represents changes of a quantity with respect to position (see advection ).

  4. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.

  5. Category:Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Category:Differentiation_rules

    Download QR code; Print/export Download as PDF; ... Pages in category "Differentiation rules" The following 11 pages are in this category, out of 11 total.

  6. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...

  7. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The key is that when one regards X 1 ⁠ ∂f / ∂u ⁠ + X 2 ⁠ ∂f / ∂v ⁠ as a ℝ 3-valued function, its differentiation along a curve results in second partial derivatives ∂ 2 f; the Christoffel symbols enter with orthogonal projection to the tangent space, due to the formulation of the Christoffel symbols as the tangential ...

  8. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...

  9. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    Differentiating X(u,v) with respect to u and v yields = [⁡ ⁡ ⁡ ⁡], = [⁡ ⁡ ⁡ ⁡ ⁡]. The coefficients of the first fundamental form may be found by taking the dot product of the partial derivatives.