Search results
Results from the WOW.Com Content Network
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()
where u is the flow velocity. The first term on the right-hand side of the equation is the ordinary Eulerian derivative (the derivative on a fixed reference frame, representing changes at a point with respect to time) whereas the second term represents changes of a quantity with respect to position (see advection ).
In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.
Download QR code; Print/export Download as PDF; ... Pages in category "Differentiation rules" The following 11 pages are in this category, out of 11 total.
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...
The key is that when one regards X 1 ∂f / ∂u + X 2 ∂f / ∂v as a ℝ 3-valued function, its differentiation along a curve results in second partial derivatives ∂ 2 f; the Christoffel symbols enter with orthogonal projection to the tangent space, due to the formulation of the Christoffel symbols as the tangential ...
The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...
Differentiating X(u,v) with respect to u and v yields = [ ], = [ ]. The coefficients of the first fundamental form may be found by taking the dot product of the partial derivatives.