enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    While not derived as a Riemann sum, taking the average of the left and right Riemann sums is the trapezoidal rule and gives a trapezoidal sum. It is one of the simplest of a very general way of approximating integrals using weighted averages. This is followed in complexity by Simpson's rule and Newton–Cotes formulas.

  3. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.

  4. Bernhard Riemann - Wikipedia

    en.wikipedia.org/wiki/Bernhard_Riemann

    His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting function , containing the original statement of the Riemann hypothesis , is regarded as a foundational paper of analytic number theory .

  5. Partition of an interval - Wikipedia

    en.wikipedia.org/wiki/Partition_of_an_interval

    A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.

  6. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    A converging sequence of Riemann sums. The number in the upper left is the total area of the blue rectangles. They converge to the definite integral of the function. We are describing the area of a rectangle, with the width times the height, and we are adding the areas together.

  7. Nonstandard calculus - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_calculus

    the width of the mesh. In the definition of the Riemann integral, the limit of the Riemann sums is taken as the width of the mesh goes to 0. Theorem: Let f be a real-valued function defined on an interval [a, b]. Then f is Riemann-integrable on [a, b] if and only if for every internal mesh of infinitesimal width, the quantity

  8. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    When the chosen tags give the maximum (respectively, minimum) value of each interval, the Riemann sum is known as the upper (respectively, lower) Darboux sum. A function is Darboux integrable if the upper and lower Darboux sums can be made to be arbitrarily close to each other for a sufficiently small mesh.

  9. Riemann series theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_series_theorem

    In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.