Search results
Results from the WOW.Com Content Network
A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path.
The Petersen graph is hypo-Hamiltonian: by deleting any vertex, such as the center vertex in the drawing, the remaining graph is Hamiltonian. This drawing with order-3 symmetry is the one given by Kempe (1886). The Petersen graph has a Hamiltonian path but no Hamiltonian cycle. It is the smallest bridgeless cubic graph with no Hamiltonian cycle.
A verifier algorithm for Hamiltonian path will take as input a graph G, starting vertex s, and ending vertex t. Additionally, verifiers require a potential solution known as a certificate, c. For the Hamiltonian Path problem, c would consist of a string of vertices where the first vertex is the start of the proposed path and the last is the end ...
The Hamiltonian paths are in one-to-one correspondence with the minimal feedback arc sets of the tournament. [3] Rédei's theorem is the special case for complete graphs of the Gallai–Hasse–Roy–Vitaver theorem , relating the lengths of paths in orientations of graphs to the chromatic number of these graphs.
Download as PDF; Printable version ... Help. Pages in category "Hamiltonian paths and cycles" The following 23 pages are in this category, out of 23 total ...
Hamiltonian platonic graphs: Image title: Orthographic projections and planar graphs of Hamiltonian cycles of the vertices of the five Platonic solids by CMG Lee. Only the octahedron has an Eulerian path, made by extending the Hamiltonian path with the dotted path. Width: 100%: Height: 100%
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Another version of Lovász conjecture states that . Every finite connected vertex-transitive graph contains a Hamiltonian cycle except the five known counterexamples.. There are 5 known examples of vertex-transitive graphs with no Hamiltonian cycles (but with Hamiltonian paths): the complete graph, the Petersen graph, the Coxeter graph and two graphs derived from the Petersen and Coxeter ...