enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    The length of the chord through one focus, perpendicular to the major axis, is called the latus rectum. One half of it is the semi-latus rectum ℓ {\displaystyle \ell } . A calculation shows: [ 4 ] ℓ = b 2 a = a ( 1 − e 2 ) . {\displaystyle \ell ={\frac {b^{2}}{a}}=a\left(1-e^{2}\right).}

  3. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.

  4. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    For elliptical orbits it can also be calculated from the periapsis and apoapsis since = and = (+), where a is the length of the semi-major axis. = + = / / + = + where: r a is the radius at apoapsis (also "apofocus", "aphelion", "apogee"), i.e., the farthest distance of the orbit to the center of mass of the system, which is a focus of the ellipse.

  5. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Also shown are: semi-major axis a, semi-minor axis b and semi-latus rectum p; center of ellipse and its two foci marked by large dots. For θ = 0°, r = r min and for θ = 180°, r = r max. Mathematically, an ellipse can be represented by the formula: = + ⁡,

  6. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    a is the orbit's semi-major axis; G is the gravitational constant, M is the mass of the more massive body. For all ellipses with a given semi-major axis the orbital period is the same, regardless of eccentricity. Inversely, for calculating the distance where a body has to orbit in order to have a given orbital period T:

  7. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    In the case of two axes being the same length: If the third axis is shorter, the ellipsoid is a sphere that has been flattened (called an oblate spheroid). If the third axis is longer, it is a sphere that has been lengthened (called a prolate spheroid). If the three axes have the same length, the ellipsoid is a sphere.

  8. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    where μ is the standard gravitational parameter of the orbited body, r is the distance at which the speed is to be calculated, and a is the length of the semi-major axis of the elliptical orbit. This expression is called the vis-viva equation. [1] For the Earth at perihelion, the value is:

  9. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    For any ellipse, let a be the length of its semi-major axis and b be the length of its semi-minor axis. In the coordinate system with origin at the ellipse's center and x-axis aligned with the major axis, points on the ellipse satisfy the equation + =,