enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Black–Scholes model - Wikipedia

    en.wikipedia.org/wiki/BlackScholes_model

    The normality assumption of the Black–Scholes model does not capture extreme movements such as stock market crashes. The assumptions of the Black–Scholes model are not all empirically valid. The model is widely employed as a useful approximation to reality, but proper application requires understanding its limitations – blindly following ...

  3. Black–Scholes equation - Wikipedia

    en.wikipedia.org/wiki/BlackScholes_equation

    In mathematical finance, the Black–Scholes equation, also called the Black–Scholes–Merton equation, is a partial differential equation (PDE) governing the price evolution of derivatives under the Black–Scholes model. [1]

  4. Stochastic volatility - Wikipedia

    en.wikipedia.org/wiki/Stochastic_volatility

    This basic model with constant volatility is the starting point for non-stochastic volatility models such as Black–Scholes model and Cox–Ross–Rubinstein model. For a stochastic volatility model, replace the constant volatility σ {\displaystyle \sigma } with a function ν t {\displaystyle \nu _{t}} that models the variance of S t ...

  5. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a finite difference model can be derived, and the valuation obtained. [2]

  6. Fundamental theorem of asset pricing - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Though arbitrage opportunities do exist briefly in real life, it has been said that any sensible market model must avoid this type of profit. [2]: 5 The first theorem is important in that it ensures a fundamental property of market models. Completeness is a common property of market models (for instance the Black–Scholes model).

  7. Local volatility - Wikipedia

    en.wikipedia.org/wiki/Local_volatility

    In mathematical finance, the asset S t that underlies a financial derivative is typically assumed to follow a stochastic differential equation of the form = +, under the risk neutral measure, where is the instantaneous risk free rate, giving an average local direction to the dynamics, and is a Wiener process, representing the inflow of randomness into the dynamics.

  8. Binomial options pricing model - Wikipedia

    en.wikipedia.org/wiki/Binomial_options_pricing_model

    The binomial model assumes that movements in the price follow a binomial distribution; for many trials, this binomial distribution approaches the log-normal distribution assumed by Black–Scholes. In this case then, for European options without dividends, the binomial model value converges on the Black–Scholes formula value as the number of ...

  9. Black model - Wikipedia

    en.wikipedia.org/wiki/Black_model

    The Black model (sometimes known as the Black-76 model) is a variant of the Black–Scholes option pricing model. Its primary applications are for pricing options on future contracts, bond options, interest rate cap and floors, and swaptions. It was first presented in a paper written by Fischer Black in 1976.