enow.com Web Search

  1. Ads

    related to: methods for euclidean geometry pdf book

Search results

  1. Results from the WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses.

  3. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.

  4. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions ( theorems ) from these.

  5. History of geometry - Wikipedia

    en.wikipedia.org/wiki/History_of_geometry

    The rigorous deductive methods of geometry found in Euclid's Elements of Geometry were relearned, and further development of geometry in the styles of both Euclid (Euclidean geometry) and Khayyam (algebraic geometry) continued, resulting in an abundance of new theorems and concepts, many of them very profound and elegant.

  6. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described (although non-rigorously by modern standards) in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions from these.

  7. Tarski's axioms - Wikipedia

    en.wikipedia.org/wiki/Tarski's_axioms

    Tarski's axioms are an axiom system for Euclidean geometry, specifically for that portion of Euclidean geometry that is formulable in first-order logic with identity (i.e. is formulable as an elementary theory). As such, it does not require an underlying set theory. The only primitive objects of the system are "points" and the only primitive ...

  8. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    [13] [14] Van Roomen's method was refined in 1687 by Isaac Newton in his Principia, [15] [16] and by John Casey in 1881. [17] Although successful in solving Apollonius' problem, van Roomen's method has a drawback. A prized property in classical Euclidean geometry is the ability to solve problems using only a compass and a straightedge. [18]

  9. Geometric Constructions - Wikipedia

    en.wikipedia.org/wiki/Geometric_Constructions

    Martin originally intended his book to be a graduate-level textbook for students planning to become mathematics teachers. [2] However, as well as this use, it can also be read by anyone who is interested in the history of geometry and has an undergraduate-level background in abstract algebra, or used as a reference work on the topic of geometric constructions.

  1. Ads

    related to: methods for euclidean geometry pdf book