enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of uniform polyhedra by vertex figure - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra...

    The relations can be made apparent by examining the vertex figures obtained by listing the faces adjacent to each vertex (remember that for uniform polyhedra all vertices are the same, that is vertex-transitive). For example, the cube has vertex figure 4.4.4, which is to say, three adjacent square faces. The possible faces are 3 - equilateral ...

  3. Cuboctahedron - Wikipedia

    en.wikipedia.org/wiki/Cuboctahedron

    This process is known as rectification, making the cuboctahedron being named the rectified cube and rectified octahedron. [ 3 ] An alternative construction is by cutting of all of the vertices, known as truncation . can be started from a regular tetrahedron , cutting off the vertices and beveling the edges.

  4. Kinematics of the cuboctahedron - Wikipedia

    en.wikipedia.org/wiki/Kinematics_of_the_cub...

    The cuboctahedron can flex this way even if its edges (but not its faces) are rigid. The skeleton of a cuboctahedron, considering its edges as rigid beams connected at flexible joints at its vertices but omitting its faces, does not have structural rigidity. Consequently, its vertices can be repositioned by folding (changing the dihedral angle ...

  5. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    As mentioned above, the cube has eight vertices, twelve edges, and six faces; each element in a matrix's diagonal is denoted as 8, 12, and 6. The first column of the middle row indicates that there are two vertices in (i.e., at the extremes of) each edge, denoted as 2; the middle column of the first row indicates that three edges meet at each ...

  6. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  7. Polyhedral combinatorics - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_combinatorics

    For instance, a cube has eight vertices, twelve edges, and six facets, so its ƒ-vector is (8,12,6). The dual polytope has a ƒ-vector with the same numbers in the reverse order; thus, for instance, the regular octahedron, the dual to a cube, has the ƒ-vector (6,12,8).

  8. Dual polyhedron - Wikipedia

    en.wikipedia.org/wiki/Dual_polyhedron

    The dual of a cube is an octahedron.Vertices of one correspond to faces of the other, and edges correspond to each other. In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. [1]

  9. Conway polyhedron notation - Wikipedia

    en.wikipedia.org/wiki/Conway_polyhedron_notation

    Augmentation operations retain original edges. They may be applied to any independent subset of faces, or may be converted into a join-form by removing the original edges. Conway notation supports an optional index to these operators: 0 for the join-form, or 3 or higher for how many sides affected faces have.