enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Symmetric_polynomial

    One context in which symmetric polynomial functions occur is in the study of monic univariate polynomials of degree n having n roots in a given field.These n roots determine the polynomial, and when they are considered as independent variables, the coefficients of the polynomial are symmetric polynomial functions of the roots.

  3. Power sum symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Power_sum_symmetric_polynomial

    The following lists the power sum symmetric polynomials of positive degrees up to n for the first three positive values of . In every case, = is one of the polynomials. The list goes up to degree n because the power sum symmetric polynomials of degrees 1 to n are basic in the sense of the theorem stated below.

  4. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    The power sum symmetric polynomial is a building block for symmetric polynomials. The sum of the reciprocals of all perfect powers including duplicates (but not including 1) equals 1. The Erdős–Moser equation , 1 k + 2 k + ⋯ + m k = ( m + 1 ) k {\displaystyle 1^{k}+2^{k}+\cdots +m^{k}=(m+1)^{k}} where m and k are positive integers, is ...

  5. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    The Newton identities also permit expressing the elementary symmetric polynomials in terms of the power sum symmetric polynomials, showing that any symmetric polynomial can also be expressed in the power sums. In fact the first n power sums also form an algebraic basis for the space of symmetric polynomials.

  6. Elementary symmetric polynomial - Wikipedia

    en.wikipedia.org/.../Elementary_symmetric_polynomial

    For any commutative ring A, denote the ring of symmetric polynomials in the variables X 1, ..., X n with coefficients in A by A[X 1, ..., X n] S n. This is a polynomial ring in the n elementary symmetric polynomials e k (X 1, ..., X n) for k = 1, ..., n. This means that every symmetric polynomial P(X 1, ..., X n) ∈ A[X 1, ..., X n] S n has a ...

  7. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one variable and its coefficients, since the coefficients can be given by polynomial expressions in the roots, and all roots play a similar role in this setting. From this point of view, the elementary symmetric polynomials are the most ...

  8. Complete homogeneous symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Complete_homogeneous...

    The complete homogeneous symmetric polynomial of degree k in n variables X 1, ..., X n, written h k for k = 0, 1, 2, ..., is the sum of all monomials of total degree k in the variables.

  9. Symmetric function - Wikipedia

    en.wikipedia.org/wiki/Symmetric_function

    Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric -tensors on a vector space is isomorphic to the space of homogeneous polynomials of degree on . Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry.