Search results
Results from the WOW.Com Content Network
Human_sperm_under_microscope.webm (WebM audio/video file, VP9, length 1 min 8 s, 640 × 480 pixels, 2.63 Mbps overall, file size: 21.26 MB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
In mammals, the sex of the offspring is determined by the sperm cell: a spermatozoon bearing an X chromosome will lead to a female (XX) offspring, while one bearing a Y chromosome will lead to a male (XY) offspring. Sperm cells were first observed in Antonie van Leeuwenhoek's laboratory in 1677. [2] Human sperm under microscope
Micromanipulators are usually used in conjunction with microscopes. Depending on the application, one or more micromanipulators may be fitted to a microscope stage or rigidly mounted to a bench next to a microscope. A typical application of micromanipulation is human intracytoplasmic sperm injection. Here, a spermatozoon measuring some 3 to 5 ...
More advanced techniques employ fluorescent or electron microscopy methods. Fluorescein-conjugated Peanut agglutinin (FITC-PNA) or Pisum sativum agglutinin (FITC-PSA) can be used to fluorescently tag the acrosome of sperm cells, which can be then used to assess the status of the acrosome using a fluorescent microscope. [14] [15] [16]
Sperm quantity and quality are the main parameters in semen quality, which is a measure of the ability of semen to accomplish fertilization. Thus, in humans, it is a measure of fertility in a man . The genetic quality of sperm, as well as its volume and motility, all typically decrease with age . [ 17 ]
Sperm motility is dependent on several metabolic pathways and regulatory mechanisms. The axonemal bend movement is based on the active sliding of axonemal doublet microtubules by the molecular motor dynein, which is divided into an outer and an inner arm. Outer and inner arm plays different roles in the production and regulation of flagellar motility: the outer arm increase the bea
Reproduction of an early electron microscope constructed by Ernst Ruska in the 1930s. Many developments laid the groundwork of the electron optics used in microscopes. [2] One significant step was the work of Hertz in 1883 [3] who made a cathode-ray tube with electrostatic and magnetic deflection, demonstrating manipulation of the direction of an electron beam.
An account of the early history of scanning electron microscopy has been presented by McMullan. [2] [3] Although Max Knoll produced a photo with a 50 mm object-field-width showing channeling contrast by the use of an electron beam scanner, [4] it was Manfred von Ardenne who in 1937 invented [5] a microscope with high resolution by scanning a very small raster with a demagnified and finely ...