enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    For an arbitrary family of groups indexed by , their direct sum [2] is the subgroup of the direct product that consists of the elements () that have finite support, where by definition, () is said to have finite support if is the identity element of for all but finitely many . [3] The direct sum of an infinite family () of non-trivial groups is ...

  3. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    The direct sum is a submodule of the direct product of the modules M i (Bourbaki 1989, §II.1.7). The direct product is the set of all functions α from I to the disjoint union of the modules M i with α(i)∈M i, but not necessarily vanishing for all but finitely many i. If the index set I is finite, then the direct sum and the direct product ...

  4. Direct product - Wikipedia

    en.wikipedia.org/wiki/Direct_product

    The direct sum and direct product are not isomorphic for infinite indices, where the elements of a direct sum are zero for all but for a finite number of entries. They are dual in the sense of category theory : the direct sum is the coproduct , while the direct product is the product.

  5. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.

  6. Matrix addition - Wikipedia

    en.wikipedia.org/wiki/Matrix_addition

    In particular, the direct sum of square matrices is a block diagonal matrix. The adjacency matrix of the union of disjoint graphs (or multigraphs) is the direct sum of their adjacency matrices. Any element in the direct sum of two vector spaces of matrices can be represented as a direct sum of two matrices. In general, the direct sum of n ...

  7. Coproduct - Wikipedia

    en.wikipedia.org/wiki/Coproduct

    For example, the coproduct in the category of groups, called the free product, is quite complicated. On the other hand, in the category of abelian groups (and equally for vector spaces), the coproduct, called the direct sum, consists of the elements of the direct product which have only finitely many nonzero terms. (It therefore coincides ...

  8. Tensor product of graphs - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of_graphs

    The tensor product of graphs. In graph theory, the tensor product G × H of graphs G and H is a graph such that the vertex set of G × H is the Cartesian product V(G) × V(H); and; vertices (g,h) and (g',h' ) are adjacent in G × H if and only if. g is adjacent to g' in G, and; h is adjacent to h' in H.

  9. Vector bundle - Wikipedia

    en.wikipedia.org/wiki/Vector_bundle

    The Whitney sum (named for Hassler Whitney) or direct sum bundle of E and F is a vector bundle E ⊕ F over X whose fiber over x is the direct sum E x ⊕ F x of the vector spaces E x and F x. The tensor product bundle E ⊗ F is defined in a similar way, using fiberwise tensor product of vector spaces.