enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The exponentially modified Gaussian distribution, a convolution of a normal distribution with an exponential distribution, and the Gaussian minus exponential distribution, a convolution of a normal distribution with the negative of an exponential distribution. The expectile distribution, which nests the Gaussian distribution in the symmetric case.

  4. Matrix normal distribution - Wikipedia

    en.wikipedia.org/wiki/Matrix_normal_distribution

    The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ⁡ ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...

  5. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Specifically, if the mass-density at time t=0 is given by a Dirac delta, which essentially means that the mass is initially concentrated in a single point, then the mass-distribution at time t will be given by a Gaussian function, with the parameter a being linearly related to 1/ √ t and c being linearly related to √ t; this time-varying ...

  6. Generalized normal distribution - Wikipedia

    en.wikipedia.org/.../Generalized_normal_distribution

    The generalized normal distribution (GND) or generalized Gaussian distribution (GGD) is either of two families of parametric continuous probability distributions on the real line. Both families add a shape parameter to the normal distribution. To distinguish the two families, they are referred to below as "symmetric" and "asymmetric"; however ...

  7. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    The fact that two random variables and both have a normal distribution does not imply that the pair (,) has a joint normal distribution. A simple example is one in which X has a normal distribution with expected value 0 and variance 1, and = if | | > and = if | | <, where >. There are similar counterexamples for more than two random variables.

  8. Erdős–Kac theorem - Wikipedia

    en.wikipedia.org/wiki/Erdős–Kac_theorem

    A spreading Gaussian distribution of distinct primes illustrating the Erdos-Kac theorem. Around 12.6% of 10,000 digit numbers are constructed from 10 distinct prime numbers and around 68% are constructed from between 7 and 13 primes. A hollow sphere the size of the planet Earth filled with fine sand would have around 10 33 grains.

  9. Gaussian q-distribution - Wikipedia

    en.wikipedia.org/wiki/Gaussian_q-distribution

    In mathematical physics and probability and statistics, the Gaussian q-distribution is a family of probability distributions that includes, as limiting cases, the uniform distribution and the normal (Gaussian) distribution. It was introduced by Diaz and Teruel. [clarification needed] It is a q-analog of the Gaussian or normal distribution.