Search results
Results from the WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
For example, the union of three sets A, B, and C contains all elements of A, all elements of B, and all elements of C, and nothing else. Thus, x is an element of A ∪ B ∪ C if and only if x is in at least one of A, B, and C. A finite union is the union of a finite number of sets; the phrase does not imply that the union set is a finite set ...
It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.
So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...
For example, ≤ is the union of < and =, and ≥ is the union of > and =. Intersection [e] If R and S are relations over X then R ∩ S = { (x, y) | xRy and xSy} is the intersection relation of R and S. The identity element of this operation is the universal relation. For example, "is a lower card of the same suit as" is the intersection of ...
{F(x) | x ∈ A} denotes the set of all objects obtained by putting members of the set A into the formula F. For example, {2x | x ∈ Z} is again the set of all even integers. (See axiom of replacement.) {F(x) | P(x)} is the most general form of set builder notation. For example, {x's owner | x is a dog} is the set of all dog owners.
If X is any set, then the power set of X (the family of all subsets of X) forms a ring of sets in either sense.. If (X, ≤) is a partially ordered set, then its upper sets (the subsets of X with the additional property that if x belongs to an upper set U and x ≤ y, then y must also belong to U) are closed under both intersections and unions.