Search results
Results from the WOW.Com Content Network
A double negative is a construction occurring when two forms of grammatical negation are used in the same sentence. This is typically used to convey a different shade of meaning from a strictly positive sentence ("You're not unattractive" vs "You're attractive").
In propositional logic, the double negation of a statement states that "it is not the case that the statement is not true". In classical logic, every statement is logically equivalent to its double negation, but this is not true in intuitionistic logic; this can be expressed by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.
But the term "double negative" can sometimes refer to the standard English constructions called litotes or nested negatives, e.g., using "He is not unhealthy" to mean "He is healthy". In some cases, nested negation is used to convey nuance, uncertainty, or the possibility of a third option other than a statement or its negation.
In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...
"Never use no double negatives." "No sentence fragments." "Parentheses are (almost always) unnecessary." "The passive voice should never be employed." "You should not use a big word when a diminutive one would suffice." "And don't begin a sentence with a connective." "Using discourse markers in academic writing basically sounds terrible, you know."
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
Some elementary teachers use raised minus signs before numbers to disambiguate them from the operation of subtraction. [21] The same convention is also used in some computer languages. For example, subtracting −5 from 3 might be read as "positive three take away negative 5", and be shown as 3 − − 5 becomes 3 + 5 = 8, which can be read as:
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.