Search results
Results from the WOW.Com Content Network
MODFLOW-OWHM [11] (version 1.00.12, October 1, 2016), The One-Water Hydrologic Flow Model (MODFLOW-OWHM, MF-OWHM or One-Water [12]), developed cooperatively between the USGS and the U.S. Bureau of Reclamation, is a fusion of multiple versions of MODFLOW-2005 (NWT, LGR, FMP, SWR, SWI) into ONE version, contains upgrades and new features and ...
MODFLOW code discretizes and simulates an orthogonal 3-D form of the governing groundwater flow equation. However, it has an option to run in a "quasi-3D" mode if the user wishes to do so; in this case the model deals with the vertically averaged T and S, rather than k and S s. In the quasi-3D mode, flow is calculated between 2D horizontal ...
Examples of governing equations include: Manning's equation is an algebraic equation that predicts stream velocity as a function of channel roughness, the hydraulic radius, and the channel slope: v = k n R 2 / 3 S 1 / 2 {\displaystyle v={k \over n}R^{2/3}S^{1/2}}
Spacing equations of subsurface drains and the groundwater energy balance applied to drainage equations [5] are examples of two-dimensional groundwater models. Three-dimensional models like Modflow [6] require discretization of the entire flow domain. To that end the flow region must be subdivided into smaller elements (or cells), in both ...
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
The original version of Visual MODFLOW, developed for DOS by Nilson Guiguer, Thomas Franz and Bob Cleary, was released in August 1994. It was based on the USGS MODFLOW-88 and MODPATH code, and resembled the FLOWPATH program developed by Waterloo Hydrogeologic Inc. [clarification needed] The first Windows based version was released in 1997. [1]
It uses a combination of the energy, momentum, and continuity equations to determine water depth with a given a friction slope (), channel slope (), channel geometry, and also a given flow rate. In practice, this technique is widely used through the computer program HEC-RAS , developed by the US Army Corps of Engineers Hydrologic Engineering ...
The Kozeny–Carman equation (or Carman–Kozeny equation or Kozeny equation) is a relation used in the field of fluid dynamics to calculate the pressure drop of a fluid flowing through a packed bed of solids. It is named after Josef Kozeny and Philip C. Carman. The equation is only valid for creeping flow, i.e. in the slowest limit of laminar ...