Search results
Results from the WOW.Com Content Network
Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. [1] This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of thousands of different cellular processes such as cellular respiration and the many other metabolic and enzymatic processes that lead to ...
Energy conversion by the inner mitochondrial membrane and chemiosmotic coupling between the chemical energy of redox reactions in the respiratory chain and the oxidative phosphorylation catalysed by the ATP synthase. [6] [7] The movement of ions across the membrane depends on a combination of two factors:
This reflux releases free energy produced during the generation of the oxidized forms of the electron carriers (NAD + and Q) with energy provided by O 2. The free energy is used to drive ATP synthesis, catalyzed by the F 1 component of the complex. [13] Coupling with oxidative phosphorylation is a key step for ATP production.
Bioenergetic systems are metabolic processes that relate to the flow of energy in living organisms. Those processes convert energy into adenosine triphosphate (ATP), which is the form suitable for muscular activity.
This store of energy is tapped when protons flow back across the membrane and down the potential energy gradient, through a large enzyme called ATP synthase in a process called chemiosmosis. The ATP synthase uses the energy to transform adenosine diphosphate (ADP) into adenosine triphosphate, in a phosphorylation reaction.
The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, producing large amounts of energy (ATP). Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions.
This type of transport is known as secondary active transport and is powered by the energy derived from the concentration gradient of the ions/molecules across the membrane the cotransporter protein is integrated within. [1]
A comparison of transport proteins [1]. An antiporter (also called exchanger or counter-transporter) is an integral membrane protein that uses secondary active transport to move two or more molecules in opposite directions across a phospholipid membrane.