Search results
Results from the WOW.Com Content Network
Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.
The first three functions in the sequence () = on [,].As converges weakly to =.. The Hilbert space [,] is the space of the square-integrable functions on the interval [,] equipped with the inner product defined by
The space of all test functions, ... The justification for this common practice is detailed below. ... is even a Hilbert space. [7]
As with the Hilbert problems, one of the prize problems (the Poincaré conjecture) was solved relatively soon after the problems were announced. The Riemann hypothesis is noteworthy for its appearance on the list of Hilbert problems, Smale's list, the list of Millennium Prize Problems, and even the Weil conjectures, in its geometric guise.
The Hilbert series of an algebra or a module is a special case of the Hilbert–Poincaré series of a graded vector space. The Hilbert polynomial and Hilbert series are important in computational algebraic geometry, as they are the easiest known way for computing the dimension and the degree of an algebraic variety defined by explicit ...
The vector space of all continuous antilinear functions on H is called the anti-dual space or complex conjugate dual space of H and is denoted by ¯ ′ (in contrast, the continuous dual space of H is denoted by ′), which we make into a normed space by endowing it with the canonical norm (defined in the same way as the canonical norm on the ...
In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication.
A rigged Hilbert space is a pair (H, Φ) with H a Hilbert space, Φ a dense subspace, such that Φ is given a topological vector space structure for which the inclusion map i is continuous. Identifying H with its dual space H * , the adjoint to i is the map i ∗ : H = H ∗ → Φ ∗ . {\displaystyle i^{*}:H=H^{*}\to \Phi ^{*}.}