enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Carl Friedrich Gauss in 1810 devised a notation for symmetric elimination that was adopted in the 19th century by professional hand computers to solve the normal equations of least-squares problems. [6] The algorithm that is taught in high school was named for Gauss only in the 1950s as a result of confusion over the history of the subject. [7]

  3. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.

  4. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  5. Gauss's method - Wikipedia

    en.wikipedia.org/wiki/Gauss's_method

    NOTE: Gauss's method is a preliminary orbit determination, with emphasis on preliminary. The approximation of the Lagrange coefficients and the limitations of the required observation conditions (i.e., insignificant curvature in the arc between observations, refer to Gronchi [2] for more details) causes inaccuracies.

  6. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_method

    Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. [1] All Gauss–Legendre methods are A-stable. [2] The Gauss–Legendre method of order two is the implicit midpoint rule.

  7. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    To quote: "It appears that Gauss and Doolittle applied the method [of elimination] only to symmetric equations. More recent authors, for example, Aitken, Banachiewicz, Dwyer, and Crout … have emphasized the use of the method, or variations of it, in connection with non-symmetric problems …

  8. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Runge–Kutta–Fehlberg method — a fifth-order method with six stages and an embedded fourth-order method; Gauss–Legendre method — family of A-stable method with optimal order based on Gaussian quadrature; Butcher group — algebraic formalism involving rooted trees for analysing Runge–Kutta methods; List of Runge–Kutta methods

  9. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    Examples of such matrices commonly arise from the discretization of 1D Poisson equation and natural cubic spline interpolation. Thomas' algorithm is not stable in general, but is so in several special cases, such as when the matrix is diagonally dominant (either by rows or columns) or symmetric positive definite ; [ 1 ] [ 2 ] for a more precise ...