Search results
Results from the WOW.Com Content Network
In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations .
Print/export Download as PDF; ... Appearance. move to sidebar hide. Stokes equation may refer to: the Airy equation; the ... Stokes law This page was last ...
The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...
In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.
Stokes derived the drag around a sphere at very low Reynolds numbers, the result of which is called Stokes' law. [30] In the limit of high Reynolds numbers, the Navier–Stokes equations approach the inviscid Euler equations, of which the potential-flow solutions considered by d'Alembert are solutions. However, all experiments at high Reynolds ...
The derivation of Stokes' law, which is used to calculate the drag force on small particles, assumes a no-slip condition which is no longer correct at high Knudsen numbers. The Cunningham slip correction factor allows predicting the drag force on a particle moving a fluid with Knudsen number between the continuum regime and free molecular flow.
The steps involved are same as the SIMPLE algorithm and the algorithm is iterative in nature. p*, u*, v* are guessed Pressure, X-direction velocity and Y-direction velocity respectively, p', u', v' are the correction terms respectively and p, u, v are the correct fields respectively; Φ is the property for which we are solving and d terms are involved with the under relaxation factor.
This equation is called the mass continuity equation, or simply the continuity equation. This equation generally accompanies the Navier–Stokes equation. In the case of an incompressible fluid, Dρ / Dt = 0 (the density following the path of a fluid element is constant) and the equation reduces to: