Search results
Results from the WOW.Com Content Network
Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene . Polypropylene belongs to the group of polyolefins and is partially crystalline and non-polar .
In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force. When a paper is cut with scissors ...
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress.They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.
Shear modulus: Ratio of shear stress to shear strain (MPa) Shear strength: Maximum shear stress a material can withstand; Slip: A tendency of a material's particles to undergo plastic deformation due to a dislocation motion within the material. Common in Crystals. Specific modulus: Modulus per unit volume (MPa/m^3) Specific strength: Strength ...
The PP and PE components of a blend constitute the "crystalline phase", and the rubber and branched PE chains and PE/PP end groups gives the "amorphous phase". If PP and PE are the dominant component of a TPO blend then the rubber fraction will be dispersed into a continuous matrix of "crystalline" polypropylene.
Maximum shear stress theory postulates that failure will occur if the magnitude of the maximum shear stress in the part exceeds the shear strength of the material determined from uniaxial testing. Maximum normal stress theory postulates that failure will occur if the maximum normal stress in the part exceeds the ultimate tensile stress of the ...
The code also specifies the required capabilities of the machine used to test the shear strength. The breaking load of the specimens must fall between 15 and 85 percent of the full scale capabilities of the apparatus. For thermoplastic composites these machines need to be able to maintain a loading rate of 80–100 kg/cm 2.
Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. [ 1 ]