Search results
Results from the WOW.Com Content Network
An exoenzyme, or extracellular enzyme, is an enzyme that is secreted by a cell and functions outside that cell. Exoenzymes are produced by both prokaryotic and eukaryotic cells and have been shown to be a crucial component of many biological processes. Most often these enzymes are involved in the breakdown of larger macromolecules.
Extracellular enzyme production supplements the direct uptake of nutrients by microorganisms and is linked to nutrient availability and environmental conditions. The varied chemical structure of organic matter requires a suite of extracellular enzymes to access the carbon and nutrients embedded in detritus .
Enzyme denaturation is normally linked to temperatures above a species' normal level; as a result, enzymes from bacteria living in volcanic environments such as hot springs are prized by industrial users for their ability to function at high temperatures, allowing enzyme-catalysed reactions to be operated at a very high rate.
Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g. carbon) it needs to live and reproduce.Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics.
The most common method is alkaline lysis, which involves the use of a high concentration of a basic solution, such as sodium hydroxide, to lyse the bacterial cells. [15] [16] [17] When bacteria are lysed under alkaline conditions (pH 12.0–12.5) both chromosomal DNA and protein are denatured; the plasmid DNA however, remains stable.
Laboratory-scale liquid-liquid extraction. Photograph of a separatory funnel in a laboratory scale extraction of 2 immiscible liquids: liquids are a diethyl ether upper phase, and a lower aqueous phase. Soxhlet extractor. Extraction in chemistry is a separation process consisting of the separation of a substance from a matrix. The distribution ...
In recent years, however, the detection of malate synthase (MS) and isocitrate lyase (ICL), key enzymes involved in the glyoxylate cycle, in some animal tissue has raised questions regarding the evolutionary relationship of enzymes in bacteria and animals and suggests that animals encode alternative enzymes of the cycle that differ in function ...
Hydrogen is able to penetrate narrow channels in the enzyme that oxygen molecules cannot enter. This allows bacteria such as Mycobacterium smegmatis to utilize the small amount of hydrogen in the atmosphere as a source of energy when other sources are lacking. [11] [12]