enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.

  3. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    That is, LSTM can learn tasks that require memories of events that happened thousands or even millions of discrete time steps earlier. Problem-specific LSTM-like topologies can be evolved. [56] LSTM works even given long delays between significant events and can handle signals that mix low and high-frequency components.

  4. Catastrophic interference - Wikipedia

    en.wikipedia.org/wiki/Catastrophic_interference

    The problem was initially investigated by Sharkey and Sharkey (1995), [33] Robins (1993) [35] and Ratcliff (1990), [2] and French (1999). [10] Kaushik et al. (2021) [ 34 ] reintroduced the problem in the context of modern neural networks and proposed a solution.

  5. Time aware long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Time_aware_long_short-term...

    Time Aware LSTM (T-LSTM) is a long short-term memory (LSTM) unit capable of handling irregular time intervals in longitudinal patient records. T-LSTM was developed by researchers from Michigan State University, IBM Research, and Cornell University and was first presented in the Knowledge Discovery and Data Mining (KDD) conference. [1]

  6. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    In machine learning, the vanishing gradient problem is encountered when training neural networks with gradient-based learning methods and backpropagation. In such methods, during each training iteration, each neural network weight receives an update proportional to the partial derivative of the loss function with respect to the current weight ...

  7. Sepp Hochreiter - Wikipedia

    en.wikipedia.org/wiki/Sepp_Hochreiter

    Hochreiter developed the long short-term memory (LSTM) neural network architecture in his diploma thesis in 1991 leading to the main publication in 1997. [3] [4] LSTM overcomes the problem of numerical instability in training recurrent neural networks (RNNs) that prevents them from learning from long sequences (vanishing or exploding gradient).

  8. Man who stamped on victim's head at riot jailed - AOL

    www.aol.com/man-stamped-victims-head-riot...

    A man who carried out a "vicious and violent attack" during riots has been jailed for almost three years. Ameer Khalile, 25, stamped on his victim's head during public disorder that broke out in ...

  9. Connectionist temporal classification - Wikipedia

    en.wikipedia.org/wiki/Connectionist_temporal...

    Connectionist temporal classification (CTC) is a type of neural network output and associated scoring function, for training recurrent neural networks (RNNs) such as LSTM networks to tackle sequence problems where the timing is variable.