enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trinomial tree - Wikipedia

    en.wikipedia.org/wiki/Trinomial_Tree

    The trinomial tree is a lattice-based computational model used in financial mathematics to price options. It was developed by Phelim Boyle in 1986. It is an extension of the binomial options pricing model, and is conceptually similar. It can also be shown that the approach is equivalent to the explicit finite difference method for option ...

  3. Margrabe's formula - Wikipedia

    en.wikipedia.org/wiki/Margrabe's_formula

    The payoff of the option, repriced under this change of numeraire, is max(0, S 1 (T)/S 2 (T) - 1). So the original option has become a call option on the first asset (with its numeraire pricing) with a strike of 1 unit of the riskless asset. Note the dividend rate q 1 of the first asset remains the same even with change of pricing.

  4. Binomial options pricing model - Wikipedia

    en.wikipedia.org/wiki/Binomial_options_pricing_model

    In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" ( lattice based ) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.

  5. How implied volatility works with options trading

    www.aol.com/finance/implied-volatility-works...

    To use these models, traders input information such as the stock price, strike price, time to expiration, interest rate and volatility to calculate an option’s theoretical price. To find implied ...

  6. Valuation of options - Wikipedia

    en.wikipedia.org/wiki/Valuation_of_options

    See Asset pricing for a listing of the various models here. As regards (2), the implementation, the most common approaches are: Closed form, analytic models: the most basic of these are the Black–Scholes formula and the Black model. Lattice models (Trees): Binomial options pricing model; Trinomial tree; Monte Carlo methods for option pricing

  7. Monte Carlo methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_for...

    The first application to option pricing was by Phelim Boyle in 1977 (for European options). In 1996, M. Broadie and P. Glasserman showed how to price Asian options by Monte Carlo. An important development was the introduction in 1996 by Carriere of Monte Carlo methods for options with early exercise features.

  8. Monte Carlo methods in finance - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_in_finance

    Note that whereas equity options are more commonly valued using other pricing models such as lattice based models, for path dependent exotic derivatives – such as Asian options – simulation is the valuation method most commonly employed; see Monte Carlo methods for option pricing for discussion as to further – and more complex – option ...

  9. Jamshidian's trick - Wikipedia

    en.wikipedia.org/wiki/Jamshidian's_trick

    Jamshidian's trick is a technique for one-factor asset price models, which re-expresses an option on a portfolio of assets as a portfolio of options. It was developed by Farshid Jamshidian in 1989. The trick relies on the following simple, but very useful mathematical observation.