Search results
Results from the WOW.Com Content Network
Because of the high rate of expansion, it is also possible for a distance between two objects to be greater than the value calculated by multiplying the speed of light by the age of the universe. These details are a frequent source of confusion among amateurs and even professional physicists. [ 33 ]
It represents the boundary between the observable and the unobservable regions of the universe, so its distance at the present epoch defines the size of the observable universe. Due to the expansion of the universe, it is not simply the age of the universe times the speed of light, as in the Hubble horizon, but rather the speed of light ...
The accelerated expansion of the universe is thought to have begun since the universe entered its dark-energy-dominated era roughly 5 billion years ago. [ 8 ] [ notes 1 ] Within the framework of general relativity , an accelerated expansion can be accounted for by a positive value of the cosmological constant Λ , equivalent to the presence of ...
The Hubble length or Hubble distance is a unit of distance in cosmology, defined as cH −1 — the speed of light multiplied by the Hubble time. It is equivalent to 4,420 million parsecs or 14.4 billion light years. (The numerical value of the Hubble length in light years is, by definition, equal to that of the Hubble time in years.)
In the context of this article, "faster-than-light" means the transmission of information or matter faster than c, a constant equal to the speed of light in vacuum, which is 299,792,458 m/s (by definition of the metre) [3] or about 186,282.397 miles per second.
Since the universe has a finite age, and light travels at a finite speed, there may be events in the past whose light has not yet had time to reach earth. This places a limit or a past horizon on the most distant objects that can be observed. Conversely, because space is expanding, and more distant objects are receding ever more quickly, light ...
Much like the concept of a terrestrial horizon, it represents the boundary between the observable and the unobservable regions of the universe, [1] so its distance at the present epoch defines the size of the observable universe. [2] Due to the expansion of the universe, it is not simply the age of the universe times the speed of light ...
The expansion of the universe is understood to exceed the speed of light ... As a result of this definition, the value of the speed of light in vacuum is exactly ...