Search results
Results from the WOW.Com Content Network
The red line is the path of a light beam emitted by the quasar about 13 billion years ago and reaching Earth at the present day. The orange line shows the present-day distance between the quasar and Earth, about 28 billion light-years, which is a larger distance than the age of the universe multiplied by the speed of light, ct.
[35] [36] [37] Another type of model, the backreaction conjecture, [38] [39] was proposed by cosmologist Syksy Räsänen: [40] the rate of expansion is not homogenous, but Earth is in a region where expansion is faster than the background. Inhomogeneities in the early universe cause the formation of walls and bubbles, where the inside of a ...
It represents the boundary between the observable and the unobservable regions of the universe, so its distance at the present epoch defines the size of the observable universe. Due to the expansion of the universe, it is not simply the age of the universe times the speed of light, as in the Hubble horizon, but rather the speed of light ...
(The numerical value of the Hubble length in light years is, by definition, equal to that of the Hubble time in years.) The Hubble distance would be the distance between the Earth and the galaxies which are currently receding from us at the speed of light, as can be seen by substituting D = cH −1 into the equation for Hubble's law, v = H 0 D.
Since the universe has a finite age, and light travels at a finite speed, there may be events in the past whose light has not yet had time to reach earth. This places a limit or a past horizon on the most distant objects that can be observed. Conversely, because space is expanding, and more distant objects are receding ever more quickly, light ...
The light-travel distance to the edge of the observable universe is the age of the universe times the speed of light, 13.8 billion light years. This is the distance that a photon emitted shortly after the Big Bang, such as one from the cosmic microwave background , has traveled to reach observers on Earth.
In astronomy, superluminal motion is the apparently faster-than-light motion seen in some radio galaxies, BL Lac objects, quasars, blazars and recently also in some galactic sources called microquasars. Bursts of energy moving out along the relativistic jets emitted from these objects can have a proper motion that appears greater than the speed ...
Much like the concept of a terrestrial horizon, it represents the boundary between the observable and the unobservable regions of the universe, [1] so its distance at the present epoch defines the size of the observable universe. [2] Due to the expansion of the universe, it is not simply the age of the universe times the speed of light ...