Search results
Results from the WOW.Com Content Network
The term "Z-test" is often used to refer specifically to the one-sample location test comparing the mean of a set of measurements to a given constant when the sample variance is known. For example, if the observed data X 1 , ..., X n are (i) independent, (ii) have a common mean μ, and (iii) have a common variance σ 2 , then the sample average ...
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1]The choice of the test depends on many properties of the research question.
Suppose we are using a Z-test to analyze the data, where the variances of the pre-treatment and post-treatment data σ 1 2 and σ 2 2 are known (the situation with a t-test is similar). The unpaired Z-test statistic is ¯ ¯ / + /, The power of the unpaired, one-sided test carried out at level α = 0.05 can be calculated as follows:
The interesting result is that consideration of a real population and a real sample produced an imaginary bag. The philosopher was considering logic rather than probability. To be a real statistical hypothesis test, this example requires the formalities of a probability calculation and a comparison of that probability to a standard.
Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.
If the test is performed using the actual population mean and variance, rather than an estimate from a sample, it would be called a one-tailed or two-tailed Z-test. The statistical tables for t and for Z provide critical values for both one- and two-tailed tests. That is, they provide the critical values that cut off an entire region at one or ...
Alternatively, sample size may be assessed based on the power of a hypothesis test. For example, if we are comparing the support for a certain political candidate among women with the support for that candidate among men, we may wish to have 80% power to detect a difference in the support levels of 0.04 units.