enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    Examples of degenerate cases—with the non-linear terms in the NavierStokes equations equal to zero—are Poiseuille flow, Couette flow and the oscillatory Stokes boundary layer. But also, more interesting examples, solutions to the full non-linear equations, exist, such as Jeffery–Hamel flow , Von Kármán swirling flow , stagnation ...

  3. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_existence...

    In mathematics, the NavierStokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  4. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The NavierStokes equations are based on the assumption that the fluid, at the scale of interest, is a continuum – a continuous substance rather than discrete particles. Another necessary assumption is that all the fields of interest including pressure , flow velocity , density , and temperature are at least weakly differentiable .

  5. Turbulence modeling - Wikipedia

    en.wikipedia.org/wiki/Turbulence_modeling

    The NavierStokes equations govern the velocity and pressure of a fluid flow. In a turbulent flow, each of these quantities may be decomposed into a mean part and a fluctuating part. Averaging the equations gives the Reynolds-averaged NavierStokes (RANS) equations, which govern the mean flow.

  6. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    This is called the NavierStokes existence and smoothness problem. The problem, restricted to the case of an incompressible flow , is to prove either that smooth, globally defined solutions exist that meet certain conditions, or that they do not always exist and the equations break down.

  7. Non-dimensionalization and scaling of the Navier–Stokes ...

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    In fluid mechanics, non-dimensionalization of the NavierStokes equations is the conversion of the NavierStokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...

  8. Astrophysical fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Astrophysical_fluid_dynamics

    The NavierStokes equations; Euler's equations; Conservation of mass. The continuity equation is an extension of conservation of mass to fluid flow. [citation needed] Consider a fluid flowing through a fixed volume tank having one inlet and one outlet. If the flow is steady (no accumulation of fluid within the tank), then the rate of fluid ...

  9. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the NavierStokes equations .