Ads
related to: graphing inequalities on a graphkutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
The formula was defined by Jeff Tupper and appears as an example in Tupper's 2001 SIGGRAPH paper on reliable two-dimensional computer graphing algorithms. [1] This paper discusses methods related to the GrafEq formula-graphing program developed by Tupper. [2] Although the formula is called "self-referential", Tupper did not name it as such. [3]
In addition to graphing both equations and inequalities, it also features lists, plots, regressions, interactive variables, graph restriction, simultaneous graphing, piecewise function graphing, recursive function graphing, polar function graphing, two types of graphing grids – among other computational features commonly found in a ...
A directed graph or digraph is a graph in which edges have orientations. In one restricted but very common sense of the term, [5] a directed graph is an ordered pair
A complete handout about the Lorenz curve including various applications, including an Excel spreadsheet graphing Lorenz curves and calculating Gini coefficients as well as coefficients of variation. LORENZ 3.0 is a Mathematica notebook which draw sample Lorenz curves and calculates Gini coefficients and Lorenz asymmetry coefficients from data ...
The crossing number inequality states that, for an undirected simple graph G with n vertices and e edges such that e > 7n, the crossing number cr(G) obeys the inequality (). The constant 29 is the best known to date, and is due to Ackerman. [3]
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.
Ads
related to: graphing inequalities on a graphkutasoftware.com has been visited by 10K+ users in the past month