Search results
Results from the WOW.Com Content Network
A polyhedron's surface area is the sum of the areas of its faces. The surface area of a right square pyramid can be expressed as = +, where and are the areas of one of its triangles and its base, respectively. The area of a triangle is half of the product of its base and side, with the area of a square being the length of the side squared.
The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...
More generally, a quadric hypersurface (of dimension D) embedded in a higher dimensional space (of dimension D + 1) is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D=1 is the case of conic sections (plane curves).
Simple examples. A simple example of a regular surface is given by the 2-sphere {(x, y, z) | x 2 + y 2 + z 2 = 1}; this surface can be covered by six Monge patches (two of each of the three types given above), taking h(u, v) = ± (1 − u 2 − v 2) 1/2. It can also be covered by two local parametrizations, using stereographic projection.
The base regularity of a pyramid's base may be classified based on the type of polygon: one example is the star pyramid in which its base is the regular star polygon. [28] The truncated pyramid is a pyramid cut off by a plane; if the truncation plane is parallel to the base of a pyramid, it is called a frustum.
A square pyramid of cannonballs at Rye Castle in England 4900 balls arranged as a square pyramid of side 24, and a square of side 70. The cannonball problem asks for the sizes of pyramids of cannonballs that can also be spread out to form a square array, or equivalently, which numbers are both square and square pyramidal. Besides 1, there is ...
The fourteenth problem of the Moscow Mathematical calculates the volume of a frustum. Problem 14 states that a pyramid has been truncated in such a way that the top area is a square of length 2 units, the bottom a square of length 4 units, and the height 6 units, as shown. The volume is found to be 56 cubic units, which is correct. [1]
The surface area of a gyroelongated square bipyramid is 16 times the area of an equilateral triangle, that is: [4], and the volume of a gyroelongated square bipyramid is obtained by slicing it into two equilateral square pyramids and one square antiprism, and then adding their volume: [4] + +.