Search results
Results from the WOW.Com Content Network
In control engineering and system identification, a state-space representation is a mathematical model of a physical system that uses state variables to track how inputs shape system behavior over time through first-order differential equations or difference equations. These state variables change based on their current values and inputs, while ...
In quantum mechanics a state space is a separable complex Hilbert space.The dimension of this Hilbert space depends on the system we choose to describe. [1] [2] The different states that could come out of any particular measurement form an orthonormal basis, so any state vector in the state space can be written as a linear combination of these basis vectors.
The general state in a Fock space is a linear combination of product states. A state that cannot be written as a convex sum of product states is called an entangled state. When we speak of one particle in state , we must bear in mind that in quantum mechanics identical particles are indistinguishable. In the same Fock space, all particles are ...
Density matrices in turn generalize state vectors, which only represent pure states. For M an operator system in a C*-algebra A with identity, the set of all states of M, sometimes denoted by S(M), is convex, weak-* closed in the Banach dual space M *. Thus the set of all states of M with the weak-* topology forms a compact Hausdorff space ...
If the size of the state space is finite, calculating the size of the state space is a combinatorial problem. [4] For example, in the Eight queens puzzle, the state space can be calculated by counting all possible ways to place 8 pieces on an 8x8 chessboard. This is the same as choosing 8 positions without replacement from a set of 64, or
The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the phase space usually consists of all possible values of the position and momentum parameters.
In control engineering and other areas of science and engineering, state variables are used to represent the states of a general system. The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the ...
A simple criterion for checking whether a density matrix is describing a pure or mixed state is that the trace of ρ 2 is equal to 1 if the state is pure, and less than 1 if the state is mixed. [d] [22] Another, equivalent, criterion is that the von Neumann entropy is 0 for a pure state, and strictly positive for a mixed state.