Search results
Results from the WOW.Com Content Network
A systems of quantities relates physical quantities, and due to this dependence, a limited number of quantities can serve as a basis in terms of which the dimensions of all the remaining quantities of the system can be defined. A set of mutually independent quantities may be chosen by convention to act as such a set, and are called base quantities.
m/s 5: L T −5: vector Current density: J →: Electric current per unit cross-section area A/m 2: L −2 I: conserved, intensive, vector Electric dipole moment: p: Measure of the separation of equal and opposite electric charges C⋅m L T I: vector Electric displacement field: D →: Strength of the electric displacement C/m 2: L −2 T I ...
[citation needed] For example, massic leaf area is leaf area divided by leaf mass and volumic leaf area is leaf area divided by leaf volume. Derived SI units involve reciprocal kilogram (kg-1), e.g., square metre per kilogram (m 2 · kg −1). Another kind of specific quantity, termed named specific quantity, is a generalization of the original ...
In everyday usage, mass and "weight" are often used interchangeably. For instance, a person's weight may be stated as 75 kg. For instance, a person's weight may be stated as 75 kg. In a constant gravitational field, the weight of an object is proportional to its mass, and it is unproblematic to use the same unit for both concepts.
Quantities can be used as being infinitesimal, arguments of a function, variables in an expression (independent or dependent), or probabilistic as in random and stochastic quantities. In mathematics, magnitudes and multitudes are also not only two distinct kinds of quantity but furthermore relatable to each other.
The former Weights and Measures office in Seven Sisters, London Units of measurement, Palazzo della Ragione, Padua. A unit of measurement, or unit of measure, is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. [1]
Examples of intensive properties include temperature, T; refractive index, n; density, ρ; and hardness, η. By contrast, an extensive property or extensive quantity is one whose magnitude is additive for subsystems. [4] Examples include mass, volume and entropy. [5] Not all properties of matter fall into these two categories.
In the physical sciences, quality assurance, and engineering, measurement is the activity of obtaining and comparing physical quantities of real-world objects and events. Established standard objects and events are used as units , and the process of measurement gives a number relating the item under study and the referenced unit of measurement.