enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. One-shot deviation principle - Wikipedia

    en.wikipedia.org/wiki/One-shot_deviation_principle

    The one-shot deviation principle (also known as single-deviation property [1]) is the principle of optimality of dynamic programming applied to game theory. [2] It says that a strategy profile of a finite multi-stage extensive-form game with observed actions is a subgame perfect equilibrium (SPE) if and only if there exist no profitable single deviation for each subgame and every player.

  3. Active matter - Wikipedia

    en.wikipedia.org/wiki/Active_matter

    [8] [9] [10] Active matter is a relatively new material classification in soft matter: the most extensively studied model, the Vicsek model, dates from 1995. [11] Research in active matter combines analytical techniques, numerical simulations and experiments.

  4. Detailed balance - Wikipedia

    en.wikipedia.org/wiki/Detailed_balance

    A Markov process is called a reversible Markov process or reversible Markov chain if there exists a positive stationary distribution π that satisfies the detailed balance equations [13] =, where P ij is the Markov transition probability from state i to state j, i.e. P ij = P(X t = j | X t − 1 = i), and π i and π j are the equilibrium probabilities of being in states i and j, respectively ...

  5. Pourbaix diagram - Wikipedia

    en.wikipedia.org/wiki/Pourbaix_diagram

    Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.

  6. Specific ion interaction theory - Wikipedia

    en.wikipedia.org/wiki/Specific_ion_interaction...

    However, when the ionic strength is changed the measured equilibrium constant will also change, so there is a need to estimate individual (single ion) activity coefficients. Debye–Hückel theory provides a means to do this, but it is accurate only at very low concentrations. Hence the need for an extension to Debye–Hückel theory.

  7. Debye–Hückel theory - Wikipedia

    en.wikipedia.org/wiki/Debye–Hückel_theory

    The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. [1] It is a linearized Poisson–Boltzmann model, which assumes an extremely simplified model of electrolyte solution but nevertheless gave accurate predictions of mean activity coefficients for ions in dilute solution.

  8. DLVO theory - Wikipedia

    en.wikipedia.org/wiki/DLVO_theory

    In 1923, Peter Debye and Erich Hückel reported the first successful theory for the distribution of charges in ionic solutions. [7] The framework of linearized Debye–Hückel theory subsequently was applied to colloidal dispersions by S. Levine and G. P. Dube [8] [9] who found that charged colloidal particles should experience a strong medium-range repulsion and a weaker long-range attraction.

  9. Molecular dynamics - Wikipedia

    en.wikipedia.org/wiki/Molecular_dynamics

    Another example is the Born (ionic) model of the ionic lattice. The first term in the next equation is Coulomb's law for a pair of ions, the second term is the short-range repulsion explained by Pauli's exclusion principle and the final term is the dispersion interaction term. Usually, a simulation only includes the dipolar term, although ...