Search results
Results from the WOW.Com Content Network
A similar non-standard notation using the unit symbol instead of a decimal separator is sometimes used to indicate voltages (i.e. 0V8 for 0.8 V, 1V8 for 1.8 V, 3V3 for 3.3 V or 5V0 for 5.0 V [24] [25] [26]) in contexts where a decimal separator would be inappropriate (e.g. in signal or pin names, in file names, or in labels or subscripts).
It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
The equivalent series resistance (ESR) is the amount of internal series resistance one would add to a perfect capacitor to model this. Some types of capacitors , primarily tantalum and aluminum electrolytic capacitors , as well as some film capacitors have a specified rating value for maximum ripple current.
The SI unit of capacitance is the farad (symbol: F), named after the English physicist Michael Faraday. [2] A 1 farad capacitor, when charged with 1 coulomb of electrical charge, has a potential difference of 1 volt between its plates. [3] The reciprocal of capacitance is called elastance.
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current.
In this type the resistance varies with the applied voltage or current. Negative resistance vs positive resistance: If the I–V curve has a positive slope (increasing to the right) throughout, it represents a positive resistance. An I–V curve that is nonmonotonic (having peaks and valleys) represents a device which has negative resistance.
electrical resistance: ohm (Ω) Ricci tensor: reciprocal square meter (m −2) radiancy: meter per second: gas constant: joule per mole per kelvin (J⋅mol −1 ⋅K −1) radius vector (position) meter (m) radius or distance meter (m) surface area: square meter (m 2) entropy: joule per kelvin (J/K) action