enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).

  3. Nash embedding theorems - Wikipedia

    en.wikipedia.org/wiki/Nash_embedding_theorems

    The Nash embedding theorem is a global theorem in the sense that the whole manifold is embedded into R n. A local embedding theorem is much simpler and can be proved using the implicit function theorem of advanced calculus in a coordinate neighborhood of the manifold. The proof of the global embedding theorem relies on Nash's implicit function ...

  4. Implicit function - Wikipedia

    en.wikipedia.org/wiki/Implicit_function

    An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...

  5. Gauss's lemma (Riemannian geometry) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(Riemannian...

    By the implicit function theorem, is a diffeomorphism on a neighborhood of . The Gauss Lemma now tells that exp p {\displaystyle \exp _{p}} is also a radial isometry. The exponential map is a radial isometry

  6. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    A major theorem, often called the fundamental theorem of the differential geometry of surfaces, asserts that whenever two objects satisfy the Gauss-Codazzi constraints, they will arise as the first and second fundamental forms of a regular surface. Using the first fundamental form, it is possible to define new objects on a regular surface.

  7. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    They measure how the surface bends by different amounts in different directions from that point. We represent the surface by the implicit function theorem as the graph of a function, f, of two variables, in such a way that the point p is a critical point, that is, the gradient of f vanishes (this can always be attained by a suitable rigid motion).

  8. Surface (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Surface_(mathematics)

    Implicit means that the equation defines implicitly one of the variables as a function of the other variables. This is made more exact by the implicit function theorem: if f(x 0, y 0, z 0) = 0, and the partial derivative in z of f is not zero at (x 0, y 0, z 0), then there exists a differentiable function φ(x, y) such that

  9. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For simple roots, this results immediately from the implicit function theorem. This is true also for multiple roots, but some care is needed for the proof. A small change of coefficients may induce a dramatic change of the roots, including the change of a real root into a complex root with a rather large imaginary part (see Wilkinson's polynomial).