Search results
Results from the WOW.Com Content Network
The universe will become extremely dark after the last stars burn out. Even so, there can still be occasional light in the universe. One of the ways the universe can be illuminated is if two carbon–oxygen white dwarfs with a combined mass of more than the Chandrasekhar limit of about 1.4 solar masses happen
From the quantum statistics of a completely degenerate electron gas (all the lowest quantum states are occupied), the pressure and the density of a white dwarf are calculated in terms of the maximum electron momentum standardized as = /, with pressure = and density =, where
In white dwarf stars, the positive nuclei are completely ionized – disassociated from the electrons – and closely packed – a million times more dense than the Sun. At this density gravity exerts immense force pulling the nuclei together. This force is balanced by the electron degeneracy pressure keeping the star stable. [4]
The book The Five Ages of the Universe discusses the history, present state, and probable future of the universe, according to cosmologists' current understanding. The book divides the timeline of the universe into five eras: the Primordial Era, the Stelliferous Era, the Degenerate Era, the Black Hole Era and the Dark Era.
Sirius B, which is a white dwarf, can be seen as a faint point of light to the lower left of the much brighter Sirius A. A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: in an Earth sized volume, it packs a mass that is comparable to the Sun.
The concept of universal wavefunction was introduced by Hugh Everett in his 1956 PhD thesis draft The Theory of the Universal Wave Function. [8] It later received investigation from James Hartle and Stephen Hawking [9] who derived the Hartle–Hawking solution to the Wheeler–deWitt equation to explain the initial conditions of the Big Bang ...
As they cool they will redden and dim until they eventually become dark black dwarfs. White dwarfs were observed in the 19th century, but the extremely high densities and pressures they contain were not explained until the 1920s. The equation of state for degenerate matter is "soft", meaning that adding more mass will result in a smaller object ...
Quantum cosmology [1] [2] is the attempt in theoretical physics to develop a quantum theory of the universe. This approach attempts to answer open questions of classical physical cosmology , particularly those related to the first phases of the universe.