Search results
Results from the WOW.Com Content Network
The frequency of exceedance is the number of times a stochastic process exceeds some critical value, usually a critical value far from the process' mean, per unit time. [1] Counting exceedance of the critical value can be accomplished either by counting peaks of the process that exceed the critical value [1] or by counting upcrossings of the ...
Histogram derived from the adapted cumulative probability distribution Histogram and probability density function, derived from the cumulative probability distribution, for a logistic distribution. The observed data can be arranged in classes or groups with serial number k. Each group has a lower limit (L k) and an upper limit (U k).
The theoretical return period between occurrences is the inverse of the average frequency of occurrence. For example, a 10-year flood has a 1/10 = 0.1 or 10% chance of being exceeded in any one year and a 50-year flood has a 0.02 or 2% chance of being exceeded in any one year.
Extreme value theory is used to model the risk of extreme, rare events, such as the 1755 Lisbon earthquake.. Extreme value theory or extreme value analysis (EVA) is the study of extremes in statistical distributions.
An estimate of the uncertainty in the first and second case can be obtained with the binomial probability distribution using for example the probability of exceedance Pe (i.e. the chance that the event X is larger than a reference value Xr of X) and the probability of non-exceedance Pn (i.e. the chance that the event X is smaller than or equal ...
Gumbel has also shown that the estimator r ⁄ (n+1) for the probability of an event — where r is the rank number of the observed value in the data series and n is the total number of observations — is an unbiased estimator of the cumulative probability around the mode of the distribution.
In mathematical notation, these facts can be expressed as follows, where Pr() is the probability function, [1] Χ is an observation from a normally distributed random variable, μ (mu) is the mean of the distribution, and σ (sigma) is its standard deviation: (+) % (+) % (+) %
In probability theory and statistics, the generalized extreme value (GEV) distribution [2] is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions.