Search results
Results from the WOW.Com Content Network
The arc length of one branch between x = x 1 and x = x 2 is a ln y 1 / y 2 . The area between the tractrix and its asymptote is π a 2 / 2 , which can be found using integration or Mamikon's theorem. The envelope of the normals of the tractrix (that is, the evolute of the tractrix) is the catenary (or chain curve) given by y = a ...
The length of the curve is given by the formula = | ′ | where | ′ | is the Euclidean norm of the tangent vector ′ to the curve. To justify this formula, define the arc length as limit of the sum of linear segment lengths for a regular partition of [ a , b ] {\displaystyle [a,b]} as the number of segments approaches infinity.
The chord function can be related to the modern sine function, by taking one of the points to be (1,0), and the other point to be (cos θ, sin θ), and then using the Pythagorean theorem to calculate the chord length: [2]
Its length is changed by an amount equal to the arc length traversed as it winds or unwinds. Arc length of the curve traversed in the interval [,] is given by | ′ | where is the starting point from where the arc length is measured. Since the tangent vector depicts the taut string here, we get the string vector as
Let each curve C t in the family be given as the solution of an equation f t (x, y)=0 (see implicit curve), where t is a parameter. Write F(t, x, y)=f t (x, y) and assume F is differentiable. The envelope of the family C t is then defined as the set of points (x,y) for which, simultaneously,
For more than two decades, Madison Vaughan has built a sweet relationship with her longtime mailman, Tim, highlighting the importance of community
An Oklahoma woman was arrested on Tuesday, Dec. 24 after her baby was allegedly abandoned at a Florida hotel and casino. Rubi Verduzco, 29, was taken into custody on two counts of felony child ...
The points of a curve C with coordinates in a field G are said to be rational over G and can be denoted C(G). When G is the field of the rational numbers, one simply talks of rational points. For example, Fermat's Last Theorem may be restated as: For n > 2, every rational point of the Fermat curve of degree n has a zero coordinate.