enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Node of Ranvier - Wikipedia

    en.wikipedia.org/wiki/Node_of_Ranvier

    Furthermore, Lambert et al. and Eshed et al. also indicates that neurofascin accumulates before Nav channels and is likely to have crucial roles in the earliest events associated with node of Ranvier formation. Thus, multiple mechanisms may exist and work synergistically to facilitate clustering of Nav channels at nodes of Ranvier.

  3. Schwann cell - Wikipedia

    en.wikipedia.org/wiki/Schwann_cell

    Schwann cells or neurolemmocytes (named after German physiologist Theodor Schwann) are the principal glia of the peripheral nervous system (PNS). Glial cells function to support neurons and in the PNS, also include satellite cells, olfactory ensheathing cells, enteric glia and glia that reside at sensory nerve endings, such as the Pacinian corpuscle.

  4. Neurilemma - Wikipedia

    en.wikipedia.org/wiki/Neurilemma

    Neurilemma (also known as neurolemma, sheath of Schwann, or Schwann's sheath) [1] is the outermost nucleated cytoplasmic layer of Schwann cells (also called neurilemmocytes) that surrounds the axon of the neuron. It forms the outermost layer of the nerve fiber in the peripheral nervous system. [2]

  5. Oligodendrocyte - Wikipedia

    en.wikipedia.org/wiki/Oligodendrocyte

    The myelin sheath is not continuous but is segmented along the axon's length at gaps known as the nodes of Ranvier. In the peripheral nervous system the myelination of axons is carried out by Schwann cells. [1] Oligodendrocytes are found exclusively in the CNS, which comprises the brain and spinal cord.

  6. Saltatory conduction - Wikipedia

    en.wikipedia.org/wiki/Saltatory_conduction

    Myelinated axons only allow action potentials to occur at the unmyelinated nodes of Ranvier that occur between the myelinated internodes. It is by this restriction that saltatory conduction propagates an action potential along the axon of a neuron at rates significantly higher than would be possible in unmyelinated axons (150 m/s compared from 0.5 to 10 m/s). [1]

  7. Myelinogenesis - Wikipedia

    en.wikipedia.org/wiki/Myelinogenesis

    Transmission electron micrograph of a myelinated axon Neuron with oligodendrocyte and myelin sheath showing cytoskeletal structures at a node of Ranvier. The basic helix–loop–helix transcription factor OLIG1 plays an integral role in the process of oligodendrocyte myelinogenesis by regulating expression of myelin-related genes. OLIG1 is ...

  8. Myelin incisure - Wikipedia

    en.wikipedia.org/wiki/Myelin_incisure

    These layers are generally uniform and continuous, but due to imperfect nature of the process by which Schwann cells wrap the nerve axon, this wrapping process can sometimes leave behind small pockets of residual cytoplasm displaced to the periphery during the formation of the myelin sheath. These pockets, or "incisures", can subdivide the ...

  9. Dendrite - Wikipedia

    en.wikipedia.org/wiki/Dendrite

    Louis-Antoine Ranvier was the first to describe the gaps or nodes found on axons and for this contribution these axonal features are now commonly referred to as the Nodes of Ranvier. Santiago Ramón y Cajal, a Spanish anatomist, proposed that axons were the output components of neurons. [ 10 ]