Search results
Results from the WOW.Com Content Network
If a mixture is not at equilibrium, the liberation of the excess Gibbs energy (or Helmholtz energy at constant volume reactions) is the "driving force" for the composition of the mixture to change until equilibrium is reached. The equilibrium constant can be related to the standard Gibbs free energy change for the reaction by the equation
At chemical equilibrium, the chemical composition of the mixture does not change with time, and the Gibbs free energy change for the reaction is zero. If the composition of a mixture at equilibrium is changed by addition of some reagent, a new equilibrium position will be reached, given enough time.
Equilibrium chemistry is concerned with systems in chemical equilibrium. The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero.
In a reversible reaction, chemical equilibrium is reached when the rates of the forward and reverse reactions are equal (the principle of dynamic equilibrium) and the concentrations of the reactants and products no longer change.
Equilibrium is attained when the sum of chemical potentials of the species on the left-hand side of the equilibrium expression is equal to the sum of chemical potentials of the species on the right-hand side. At the same time, the rates of forward and backward reactions are equal to each other.
In other words, = is a necessary condition for chemical equilibrium under these conditions (in the absence of an applied voltage). Thermodynamic equilibrium is the unique stable stationary state that is approached or eventually reached as the system interacts with its surroundings over a long time.
This guy gave new meaning to the slogan “Gottahava Wawa.” Police in East Windsor, N.J., arrested a 24-year-old man on Dec. 23, and charged him with misusing the town’s 911 system for ...
An equilibrium state is mathematically ascertained by seeking the extrema of a thermodynamic potential function, whose nature depends on the constraints imposed on the system. For example, a chemical reaction at constant temperature and pressure will reach equilibrium at a minimum of its components' Gibbs free energy and a maximum of their entropy.