Search results
Results from the WOW.Com Content Network
The toric code is defined on a two-dimensional lattice, usually chosen to be the square lattice, with a spin- ... For example, universal quantum computing can be ...
A lattice in the sense of a 3-dimensional array of regularly spaced points coinciding with e.g. the atom or molecule positions in a crystal, or more generally, the orbit of a group action under translational symmetry, is a translation of the translation lattice: a coset, which need not contain the origin, and therefore need not be a lattice in ...
The regular skew polyhedron onto which the Laves graph can be inscribed. The edges of the Laves graph are diagonals of some of the squares of this polyhedral surface. As Coxeter (1955) describes, the vertices of the Laves graph can be defined by selecting one out of every eight points in the three-dimensional integer lattice, and forming their nearest neighbor graph.
A common type of lattice graph (known under different names, such as grid graph or square grid graph) is the graph whose vertices correspond to the points in the plane with integer coordinates, x-coordinates being in the range 1, ..., n, y-coordinates being in the range 1, ..., m, and two vertices being connected by an edge whenever the corresponding points are at distance 1.
Let be a locally compact group and a discrete subgroup (this means that there exists a neighbourhood of the identity element of such that = {}).Then is called a lattice in if in addition there exists a Borel measure on the quotient space / which is finite (i.e. (/) < +) and -invariant (meaning that for any and any open subset / the equality () = is satisfied).
A lattice in a locally compact topological group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R n , this amounts to the usual geometric notion of a lattice , and both the algebraic structure of lattices and the geometry of the totality of all lattices are ...
A two-dimensional complex space – such as the two-dimensional complex coordinate space, the complex projective plane, or a complex surface – has two complex dimensions, which can alternately be represented using four real dimensions. A two-dimensional lattice is an infinite grid of points which can be represented using integer coordinates.
[1] [2] The simplest mathematical realization of spatial network is a lattice or a random geometric graph (see figure in the right), where nodes are distributed uniformly at random over a two-dimensional plane; a pair of nodes are connected if the Euclidean distance is smaller than a given neighborhood radius.