Search results
Results from the WOW.Com Content Network
When radiation deposits enough energy in organic tissue to cause ionization, this tends to break molecular bonds, and thus alter the molecular structure of the irradiated molecules. Less energetic radiation, such as visible light, only causes excitation, not ionization, which is usually dissipated as heat with relatively little chemical damage ...
Radiation embrittlement results in a reduction of the energy to fracture, due to a reduction in strain hardening (as hardening is already occurring during irradiation). This is motivated for very similar reasons to those that cause radiation hardening; development of defect clusters, dislocations, voids, and precipitates.
Ionizing radiation is known to cause cancer in humans. [4] We know this from the Life Span Study, which followed survivors of the atomic bombing in Japan during World War 2. [5] [4] Over 100,000 individuals were followed for 50 years. [5] 1 in 10 of the cancers that formed during this time was due to radiation. [6]
Infrared or red radiation from a common household radiator or electric heater is an example of thermal radiation, as is the heat emitted by an operating incandescent light bulb. Thermal radiation is generated when energy from the movement of charged particles within atoms is converted to electromagnetic radiation.
Ionizing radiation may be used to treat other cancers, but this may, in some cases, induce a second form of cancer. [74] Radiation can cause cancer in most parts of the body, in all animals, and at any age, although radiation-induced solid tumors usually take 10–15 years, and can take up to 40 years, to become clinically manifest, and ...
Longer-wavelength radiation such as visible light is nonionizing; the photons do not have sufficient energy to ionize atoms. Throughout most of the electromagnetic spectrum, spectroscopy can be used to separate waves of different frequencies, so that the intensity of the radiation can be measured as a function of frequency or wavelength.
Instead of producing charged ions when passing through matter, non-ionizing electromagnetic radiation has sufficient energy only for excitation (the movement of an electron to a higher energy state). Non-ionizing radiation is not a significant health risk. In contrast, ionizing radiation has a higher frequency and shorter wavelength than non ...
Radiation damage to materials occurs as a result of the interaction of an energetic incident particle (a neutron, or otherwise) with a lattice atom in the material. The collision causes a massive transfer of kinetic energy to the lattice atom, which is displaced from its lattice site, becoming what is known as the primary knock-on atom (PKA ...