Search results
Results from the WOW.Com Content Network
In organic chemistry, a cross-coupling reaction is a reaction where two different fragments are joined. Cross-couplings are a subset of the more general coupling reactions. Often cross-coupling reactions require metal catalysts. One important reaction type is this:
In organic chemistry, the Kumada coupling is a type of cross coupling reaction, useful for generating carbon–carbon bonds by the reaction of a Grignard reagent and an organic halide. The procedure uses transition metal catalysts , typically nickel or palladium, to couple a combination of two alkyl , aryl or vinyl groups .
In one important reaction type, a main group organometallic compound of the type R-M (where R = organic group, M = main group centre metal atom) reacts with an organic halide of the type R'-X with formation of a new carbon-carbon bond in the product R-R'. The most common type of coupling reaction is the cross coupling reaction. [1] [2] [3]
This recognition sparked interest in polymerization mechanism so that it could be expanded to other monomers. Few polymers can be synthesized via CTP, so most conjugated polymers are synthesized via step-growth using palladium catalyzed cross-coupling reactions.
Building blocks that make up the network of CMPs must contain an aromatic system and have at least two reactive groups. To generate the porous structure of CMPs, cross-coupling of building blocks with different geometries to create a 3-D polymer backbone is necessary, while self-condensation reactions occur in the homo-coupling of building blocks with similar geometry. [2]
The coupling of a terminal alkyne and an aromatic ring is the pivotal reaction when talking about applications of the copper-promoted or copper-free Sonogashira reaction. The list of cases where the typical Sonogashira reaction using aryl halides has been employed is large, and choosing illustrative examples is difficult.
In organic chemistry, phosphonium coupling is a cross-coupling reaction for organic synthesis. It is a mild, efficient, chemoselective and versatile methodology for the formation of C–C, C–N, C–O, and C–S bond of unactivated and unprotected tautomerizable heterocycles. The method was originally reported in 2004. [1]
Key step in synthesis of lithospermic acid. The total synthesis of calothrixin A and B features an intramolecular Pd-catalyzed cross coupling reaction via C-H activation, an example of a guided C-H activation. Cross coupling occurs between aryl C-I and C-H bonds to form a C-C bond. [31]