Search results
Results from the WOW.Com Content Network
In statistics, the conditional probability table (CPT) is defined for a set of discrete and mutually dependent random variables to display conditional probabilities of a single variable with respect to the others (i.e., the probability of each possible value of one variable if we know the values taken on by the other variables).
Probability that D 1 = 2. Table 1 shows the sample space of 36 combinations of rolled values of the two dice, each of which occurs with probability 1/36, with the numbers displayed in the red and dark gray cells being D 1 + D 2. D 1 = 2 in exactly 6 of the 36 outcomes; thus P(D 1 = 2) = 6 ⁄ 36 = 1 ⁄ 6:
Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of ...
where is the instance, [] the expectation value, is a class into which an instance is classified, (|) is the conditional probability of label for instance , and () is the 0–1 loss function: L ( x , y ) = 1 − δ x , y = { 0 if x = y 1 if x ≠ y {\displaystyle L(x,y)=1-\delta _{x,y}={\begin{cases}0&{\text{if }}x=y\\1&{\text{if }}x\neq y\end ...
If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .
The conditional probability at any interior node is the average of the conditional probabilities of its children. The latter property is important because it implies that any interior node whose conditional probability is less than 1 has at least one child whose conditional probability is less than 1.
In probability theory, the rule of succession is a formula introduced in the 18th century by Pierre-Simon Laplace in the course of treating the sunrise problem. [1] The formula is still used, particularly to estimate underlying probabilities when there are few observations or events that have not been observed to occur at all in (finite) sample data.
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.