Search results
Results from the WOW.Com Content Network
Chloromethane was a widely used refrigerant, but its use has been discontinued. It was particularly dangerous among the common refrigerants of the 1930s due to its combination of toxicity, flammability and lack of odor as compared with other toxic refrigerants such as sulfur dioxide and ammonia . [ 24 ]
The handling of this chemical may incur notable safety precautions. It is highly recommended that you seek the safety data sheet for this chemical from a reliable source such as SIRI, and follow its directions.
In the theory of symbiogenesis, a merger of an archaean and an aerobic bacterium created the eukaryotes, with aerobic mitochondria; a second merger added chloroplasts, creating the green plants. The original theory by Lynn Margulis proposed an additional preliminary merger, but this is poorly supported and not now generally believed.
Several million tons of chlorinated methanes are produced annually. Chloromethane is a precursor to chlorosilanes and silicones. Chlorodifluoromethane (CHClF 2) is used to make teflon. [7] Alkyl bromides Large scale applications of alkyl bromides exploit their toxicity, which also limits their usefulness.
Chloroplasts, containing thylakoids, visible in the cells of Ptychostomum capillare, a type of moss. A chloroplast (/ ˈ k l ɔːr ə ˌ p l æ s t,-p l ɑː s t /) [1] [2] is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells.
The most important is dichloromethane, which is mainly used as a solvent. Chloromethane is a precursor to chlorosilanes and silicones. Historically significant (as an anaesthetic), but smaller in scale is chloroform, mainly a precursor to chlorodifluoromethane (CHClF 2) and tetrafluoroethene which is used in the manufacture of Teflon. [1]
Plant embryonic development, also plant embryogenesis, is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination . [ 1 ]
The function of the vast majority of chlorophyll (up to several hundred molecules per photosystem) is to absorb light. Having done so, these same centers execute their second function: The transfer of that energy by resonance energy transfer to a specific chlorophyll pair in the reaction center of the photosystems.