Search results
Results from the WOW.Com Content Network
Brain-derived neurotrophic factor (BDNF), or abrineurin, [5] is a protein [6] that, in humans, is encoded by the BDNF gene. [ 7 ] [ 8 ] BDNF is a member of the neurotrophin family of growth factors, which are related to the canonical nerve growth factor (NGF), a family which also includes NT-3 and NT-4 /NT-5.
It is known that during postnatal life a critical step to nervous system development is synapse elimination. The changes in synaptic connections and strength are results from LTP and LTD and are strongly regulated by the release of brain-derived neurotrophic factor (BDNF), an activity-dependent synapse-development protein.
According to the United States National Library of Medicine's medical subject headings, the term neurotrophin may be used as a synonym for neurotrophic factor, [5] but the term neurotrophin is more generally reserved for four structurally related factors: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). [6]
Neurotrophic factors also promote the initial growth and development of neurons in the central nervous system and peripheral nervous system, and they are capable of regrowing damaged neurons in test tubes and animal models. [1] [4] Some neurotrophic factors are also released by the target tissue in order to guide the growth of developing axons.
Brain derived neurotrophic factor (BDNF) is a neurotrophin associated with plasticity and growth of the central nervous system. [14] It is a PRP candidate because its expression is closely related to activity, and abnormalities in its translation and signaling results in L-LTP deficits and amnesia. [14]
Brain-derived neurotrophic factor (BDNF) is a key protein that is dysregulated by HDAC dysregulation. BDNF is a protein that regulates the structure and function of neuronal synapses. It plays an important role in neuronal activation, synaptic plasticity, and dendritic morphology—all of which are factors that may affect cognitive function.
The steady state 8-OHdG level in the brain is similar to that in other tissues. [39] The occurrence of 8-OHdG in neurons appears to have a role in memory and learning. The DNA glycosylase oxoguanine glycosylase (OGG1) is the primary enzyme responsible for the excision of 8-OHdG in base excision repair. However, OGG1, which targets and ...
Tropomyosin receptor kinase B is the high affinity catalytic receptor for several "neurotrophins", which are small protein growth factors that induce the survival and differentiation of distinct cell populations. The neurotrophins that activate TrkB are: BDNF (Brain Derived Neurotrophic Factor), neurotrophin-4 (NT-4), and neurotrophin-3 (NT-3).