Search results
Results from the WOW.Com Content Network
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].
Simplified forms of Gaussian elimination have been developed for these situations. [ 6 ] The textbook Numerical Mathematics by Alfio Quarteroni , Sacco and Saleri, lists a modified version of the algorithm which avoids some of the divisions (using instead multiplications), which is beneficial on some computer architectures.
In this case it is faster (and more convenient) to do an LU decomposition of the matrix A once and then solve the triangular matrices for the different b, rather than using Gaussian elimination each time. The matrices L and U could be thought to have "encoded" the Gaussian elimination process.
The pivot or pivot element is the element of a matrix, or an array, which is selected first by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this ...
No (partial) pivoting is necessary for a strictly column diagonally dominant matrix when performing Gaussian elimination (LU factorization). The Jacobi and Gauss–Seidel methods for solving a linear system converge if the matrix is strictly (or irreducibly) diagonally dominant. Many matrices that arise in finite element methods are diagonally ...
These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination. If Gaussian elimination produces the row echelon form without requiring any row interchanges, then P = I, so an LU decomposition exists.
In linear algebra and statistics, the partial inverse of a matrix is an operation related to Gaussian elimination which has applications in numerical analysis and statistics. It is also known by various authors as the principal pivot transform , or as the sweep , gyration , or exchange operator.
with initial conditions ϕ n+1 = 1 and ϕ n = a n. [5] [6] Closed form solutions can be computed for special cases such as symmetric matrices with all diagonal and off-diagonal elements equal [7] or Toeplitz matrices [8] and for the general case as well. [9] [10] In general, the inverse of a tridiagonal matrix is a semiseparable matrix and vice ...