Search results
Results from the WOW.Com Content Network
English: Analysis of data structures, tree compared to hash and array based structures, height balanced tree compared to more perfectly balanced trees, a simple height balanced tree class with test code, comparable statistics for tree performance, statistics of worst case strictly-AVL-balanced trees versus perfect full binary trees.
An example of a y-fast trie. The nodes shown in the x-fast trie are the representatives of the O(n / log M) balanced binary search trees.. A y-fast trie consists of two data structures: the top half is an x-fast trie and the lower half consists of a number of balanced binary trees.
If the two trees are balanced, join simply creates a new node with left subtree t 1, root k and right subtree t 2. Suppose that t 1 is heavier (this "heavier" depends on the balancing scheme) than t 2 (the other case is symmetric). Join follows the right spine of t 1 until a node c which is balanced with t 2.
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
A weight-balanced tree is a binary search tree that stores the sizes of subtrees in the nodes. That is, a node has fields key, of any ordered type; value (optional, only for mappings) left, right, pointer to node; size, of type integer. By definition, the size of a leaf (typically represented by a nil pointer) is zero.
First, the tree is turned into a linked list by means of an in-order traversal, reusing the pointers in the tree's nodes. A series of left-rotations forms the second phase. [3] The Stout–Warren modification generates a complete binary tree, namely one in which the bottom-most level is filled strictly from left to right.
Lookup is not modified from a standard binary search tree, and has a worst-case time of ().This is in contrast to splay trees which have a worst-case time of ().The reduced node memory overhead compared to other self-balancing binary search trees can further improve locality of reference and caching.
In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, [1] is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.