Search results
Results from the WOW.Com Content Network
In crystalline materials, Umklapp scattering (also U-process or Umklapp process) is a scattering process that results in a wave vector (usually written k) which falls outside the first Brillouin zone. If a material is periodic, it has a Brillouin zone, and any point outside the first Brillouin zone can also be expressed as a point inside the zone.
A phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids.A type of quasiparticle in physics, [1] a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles.
Phonons take on both labels such that transverse acoustic and optical phonons are denoted TA and TO, respectively; likewise, longitudinal acoustic and optical phonons are denoted LA and LO. The type of surface phonon can be characterized by its dispersion in relation to the bulk phonon modes of the crystal.
These phenomenological equations can in many cases accurately model the thermal conductivity of isotropic nano-structures with characteristic sizes on the order of the phonon mean free path. More detailed calculations are in general required to fully capture the phonon-boundary interaction across all relevant vibrational modes in an arbitrary ...
A theory that is asymmetric with respect to chiralities is called a chiral theory, while a non-chiral (i.e., parity-symmetric) theory is sometimes called a vector theory. Many pieces of the Standard Model of physics are non-chiral, which is traceable to anomaly cancellation in chiral theories.
Asymmetric hydrogenation is a chemical reaction that adds two atoms of hydrogen to a target (substrate) molecule with three-dimensional spatial selectivity.Critically, this selectivity does not come from the target molecule itself, but from other reagents or catalysts present in the reaction.
A chiral molecule or ion exists in two stereoisomers that are mirror images of each other, [5] called enantiomers; they are often distinguished as either "right-handed" or "left-handed" by their absolute configuration or some other criterion. The two enantiomers have the same chemical properties, except when reacting with other chiral compounds.
Chirality with hands and two enantiomers of a generic amino acid The direction of current flow and induced magnetic flux follow a "handness" relationship. The term chiral / ˈ k aɪ r əl / describes an object, especially a molecule, which has or produces a non-superposable mirror image of itself.