Search results
Results from the WOW.Com Content Network
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
Python borrows this feature from its predecessor ABC: instead of punctuation or keywords, it uses indentation to indicate the run of a block. In so-called "free-format" languages—that use the block structure derived from ALGOL—blocks of code are set off with braces ({ }) or keywords.
Python's is operator may be used to compare object identities (comparison by reference), and comparisons may be chained—for example, a <= b <= c. Python uses and, or, and not as Boolean operators. Python has a type of expression named a list comprehension, and a more general expression named a generator expression. [78]
Python has a syntax modeled on that of list comprehensions, called a generator expression that aids in the creation of generators. The following extends the first example above by using a generator expression to compute squares from the countfrom generator function:
Python uses an English-based syntax. Haskell replaces the set-builder's braces with square brackets and uses symbols, including the standard set-builder vertical bar. The same can be achieved in Scala using Sequence Comprehensions, where the "for" keyword returns a list of the yielded variables using the "yield" keyword. [6]
Download as PDF; Printable version; ... In Python, jagged arrays are not native but one can use list comprehensions to create a multi-dimensional list which supports ...
It seems to me that almost every example language (almost only because a few look so alien that I can't comment) does not show *native* support for list comprehension. Rather, the examples show how to perform "List Comprehension" with the language's existing (non-native comprehension) syntax. A particularly good example of this is the C# example.