Search results
Results from the WOW.Com Content Network
In geometry the rotation group is the group of all rotations about the origin of three-dimensional Euclidean space R 3 under the operation of composition. [1] By definition, a rotation about the origin is a linear transformation that preserves length of vectors (it is an isometry) and preserves orientation (i.e. handedness) of space.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. [ 1 ] By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry ), and orientation ...
The conjugate closure of a singleton containing a rotation in 3D is E + (3). In 2D it is different in the case of a k-fold rotation: the conjugate closure contains k rotations (including the identity) combined with all translations. E(2) has quotient group O(2) / C k and E + (2) has quotient group SO(2) / C k. For k = 2 this was already covered ...
Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.
The rotation group is a Lie group of rotations about a fixed point. This (common) fixed point or center is called the center of rotation and is usually identified with the origin. The rotation group is a point stabilizer in a broader group of (orientation-preserving) motions. For a particular rotation: The axis of rotation is a line of its ...
In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.
In these systems, the points, planes, and lines have the same coordinates that they have in plane-based GA. But transformations like rotations and reflections will have very different effects on the geometry. In all cases below, the algebra is a double cover of the group of reflections, rotations, and rotoreflections in the space.
This category deals with topics in physics related to the three-dimensional spherical symmetries of physical objects, including topics concerning rotations in classical mechanics, as well as spin and angular momentum in quantum mechanics, and the representations of the Lie groups SU(2) and SO(3).